Limits on Primordial Gas in the AU Microscopii Disk from Far-UV Spectroscopy Aki Roberge (CIW-DTM), Alycia J. Weinberger (CIW-DTM), Paul D. Feldman (JHU) ### Introduction - AU Mic: M1 star member of Beta Pic Assoc. - 12 Myr old (Zuckerman et al. 2001) - Recently imaged edge-on disk - Ground-based (Kalas, Liu, & Matthews 2004) - HST-ACS (Krist et al., this meeting) - Lifetime of dust outside 50 AU >> age of star - Weak radiation pressure (Kalas, Liu, & Matthews 2004) - Does primordial material survive? Do stellar phenomena control disk dissipation? # Molecular Gas in AU Mic - Primordial H₂ needed for giant planet formation - Sub-mm observations : (Liu et al. 2004) - − Dust mass = $0.011 M_{\oplus}$ - $-N_{\rm CO} < 6.3 \times 10^{13} \ {\rm cm}^{-2}$ - Using assumed CO/H₂ ratio, mass of H₂ < 1.3 M_{\oplus} - Gas-to-dust ratio < 118 : 1</p> - ISM ratio = 100 : 1 - Consistent w/ no gas depletion relative to dust - FUSE H₂ limit in Beta Pic: primordial gas depleted (Lecavelier des Etangs et al. 2001) # Why UV? - Far-UV transitions of H₂ very strong - Sensitive to cold gas - J=0,1 contain > 90% of molecules at T < 200 K - No CO/H₂ ratio needed - But M-star far-UV continuum very weak - H₂ lines overlap with emission lines Figure 2a, Roberge et al. (2001) Can provide background flux for H₂ absorption spectroscopy ### **Data Reduction** | | Observation Date | | | |------|----------------------------|------------------------|--| | FUSE | 2000 Aug 26
2001 Oct 10 | (Redfield et al. 2002) | | | STIS | 1998 Sept 6 | (Pagano et al. 2000) | | - Recalibrated all data - Excluded exposures containing flares - Set FUSE absolute wavelength calibration # **FUSE Emission Lines** - Transition zone OVI lines, chromospheric CII lines - Measured OVI flux ratio ≈ 2:1 - Means little H₂ absorption - CII lines provide tighter constraint ### Model for FUSE Emission Lines #### CII doublet model : - Used STIS CII λ1335parameters - Added interstellar CII absorption - Convolved to FUSE resolution - OVI doublet model : - Fit two Gaussians to λ1032 line - Model λ1038 line (1:2) # H₂ Limit from Sub-mm Observations - Line-of-sight H₂ column density - $< 3.2 \times 10^{20} \text{ cm}^{-2}$ (Liu et al. 2004) - $T_{H2} = T_{dust} = 40 \text{ K}$ - Sub-mm upper limit ruled out at 32σ level Result is insensitive to assumed H₂ velocity # H₂ Limit from FUSE Observations - H₂ model with N(J=0) and N(J=1) - Set v_{H2} to stellar and ISM velocities - stellar velocity =expected CS gas velocity - 3σ limits for $v_{H2} = v_{star}$: - $N(J=0) < 9 \times 10^{18} \text{ cm}^{-2}$ - $N(J=1) < 2 \times 10^{18} \text{ cm}^{-2}$ - Smaller limits for $v = v_{ISM}$ Total upper limit = 1×10^{19} cm⁻² # **Implications** Gas-to-Dust • Sub-mm H_2 : < 3.2×10^{20} cm⁻² < 118:1 Far-UV H_2 : < 1 × 10¹⁹ cm⁻² < 4:1 | | AU Mic | Beta Pic | ISM | |-------------------------------------|-------------------|--------------------|-------| | Spec. Type | M1 | A5 | | | L (L _{solar}) | 0.1 | 8.7 | | | M _{dust} (M⊕) | 0.01 | 0.04 | | | | (Liu et al. 2004) | (Dent et al. 2000) | | | M _{H2} / M _{dust} | < 4:1 | < 3:1 | 100:1 | #### Gas depletion not affected by spectral type? 2004 July 27 ### **Future Work** - Intriguing discrepancy between data and model on red wings of CII lines - Lines are too narrow - Could be a hint of H₂ absorption $(N_{H2} \sim \text{few} \times 10^{18} \text{ cm}^{-2})^{-1}$ But could be at the velocity of the LISM Investigate CII doublet model, characterize systematic errors 2004 July 27 # CII Model - IS C_{II} λ1334 absorption - Modeled blended λ1335 line w/ narrow and broad Gaussians - Used parameters to model λ1334 line. $$v = -3.8 \text{ km/s}$$ $v_{p} = -4.89 \text{ km/s}$ (Barrado y Navascués et al. 1999) # Interstellar CII